Diesel designs cut health risk

CSIRO Exploration & Mining scientists are trying to develop a method of eliminating or at least reducing mine workers' exposure to damaging particulates.

When the German chemist Dr Rudolph Diesel first introduced his diesel engine to the world at the end of the 19th century it was considered a major advance to industry.

The engine’s high thermal efficiency meant it burnt less fuel than a gasoline engine and, because of the diesel engine’s more efficient lubrication abilities, the engines would last longer.

But, as we have learned over the years, emissions from carbon-based products such as the diesel engine also have significant negative effects on human health.

More and more industries, governments and communities are becoming aware of the dangers of particulate material suspended in the air, notably the risk of lung cancer.

Carbon soot particles from diesel engines allow to form on their surfaces other metals and toxic substances produced by diesel engines such as cancer-causing aldehydes (such as formaldehyde) and polycyclic aromatic hydrocarbons.

According to a report released last year by the Australian Coal Association Research Program (ACARP) “the significant introduction of diesel engines in underground mining plant since the 1960s has created a hazard in terms of suspended particulates”.

“The extent of this hazard is indicated by NIOSH [National Institute for Occupational Health & Safety in the United States] where exposure levels of diesel emissions were shown to be significantly higher for underground miners than for other occupations,” the report said.

Cutting emissions

This report covers the ACARP C15021 research project into using acoustic agglomeration techniques to reduce diesel particulates from coal mine vehicle exhaust by 92%.

According to a Project Leader with CSIRO’s Exploration & Mining Division, Dr Patrick Glynn (right), “despite the expected improvements in emission performance by new diesel fuel (see box below right), end-of-pipe emission control may still be required to fully satisfy OHS&E expectations and future regulation”.

Dr Glynn said the goal of the ACARP project was to achieve “a high removal of 2.5 ìm (PM 2.5) particulate material from the exhaust stream”.

“These particles have a propensity to be held in suspension and will only settle by inertial (gravity) means very slowly.

“The ultrasonic agglomeration method of removal increases the mass of the diesel particulate particles using ultrasonic agglomeration where a sonic probegenerated sound wave is tuned to increase the energy in a small particle such that it is attracted to other diesel particles.

This increases the overall mass of the agglomerated particle, allowing it to be removed by a ‘cyclone’ using exhaust stream velocity.”

This cyclonic filtration method is similar to the one used in modern vacuum cleaners: the dust-laden air in the outer walls of the cyclone swirls downwards and at the base of the vortex begins to swirl upwards, up the inside of the vortex.

The vast majority of the debris separates from the air stream as air reaches the bottom of the swirl, and is deposited in the dirt container.

Only a small fraction remains in the air and can be removed by a secondary, cartridge-type filter.

Testing positive

The tests were conducted at the Control Technologies International Ltd laboratory at Archerfield, Queensland, on a water brake dynamometer and were split into four stages including bench-testing a diesel engine to measure diesel particulate emissions over the RPM (revolutions per minute) spectrum, and building an electrostatic diesel exhaust filter and two prototype diesel exhaust scrubber ultrasonic filters which were fitted to a mine vehicle for a three month test period.

The tests also involved correlating the fundamental mass-over-time measurement used in this ACARP project with those from a NIOSH diesel particulate exposure-measuring instrument. This was done to measure diesel particulate loading in real time and the testing was to verify the effectiveness of this instrument against gravimetric (or fundamental) measurement.

Good results

The results have been of significant value to scientists working to improve occupational health and safety for mine workers.

“The reduction of 92% in diesel exhaust particulate achieved by this project is remarkable because there is very little backpressure on the exhaust system that would, using normal micron filters, cause reduced engine output,” said Dr Glynn.

“The outcome of the project at 92% particulate reduction came close to the 95% particulate reduction aimed for at the beginning of the project.”

Since last year’s report was submitted the research team has been awarded a second grant for a triple-chamber acoustic agglomerator that will remove up to 99% of diesel particulates. This project is now underway.

* This article was first published in the July/August edition of the CSIRO’s Earthmatters magazine.

To keep up to date with Australian Mining, subscribe to our free email newsletters delivered straight to your inbox. Click here.